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Abstract

A large deviation result is established for sequences of random variables

with random indices. This result is used to compare two different sampling

schemes when testing for a simple hypothesis versus a simple alternative. It

turns out that the sampling scheme yielding more expected number of observations

for the same sampling cost is not necessarily the more profitable procedure.

Properties other than the mean of the distribution of the occurrence of the

observations play a role in determining the more profitable sampling rule.

1. Introduction and sumea.~~

Consider a situation where observations occur randomly over time and the

statistician has to choose between two schemes by which he can pay for the

observations. In scheme I he sust pay c1 per observation while in scheme II

he ~*st pay C2 per unit time and collect the random number of observations that

fall in that period of time. In this paper we compare the profitability of

these schemes, when the purpose of the statistician is to test a hypothesis.

Since c1 and c2 are costs for doing different things one cannot come up with a

simple number which can be called the asymptotic efficiency. Instead, we propose,

in Section 5, a cost ratio based on Bayesian considerations. This Asymptotic

Bayes Cost Ratio (A BCR(I,II)) is the limiting ratio of the two costs of sampling

which acheive equal Bayes risks when the best available testing procedure and

best sample size or stopping time are used in each case. Thus, when the actual

cost ratio c1/c2 is less than ABCR(I,II), scheme I is more profitable and when

c1/c2 exceeds ABCR(I,II) , scheme II is more profitable.
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It turns out that the scheme that produces more expected number of obser-

vations for the same cost is not necessarily the more profitable scheme.

Properties other than the mean of the occurrence of the observations play a

role in determining the more profitable scheme .

• The calculation of efficiency of tests leads quite naturally to deviation

theory. For example, the computation of Bayes risk efficiency as forsulated by

Chernoff (1952) or the Bahadur efficiency (Bahadur (1960, (1967), and (1971))

requires results from large deviation theory, while the computation of Bayes

risk eff iciency as formulated by Rubin and Sethuraman (l965a) and (l965b)

requires moderate deviation theory. This is also characteristic of the ABCR(I,II).

En Section 4, a large deviation result for sequences of random variables with

random indices, required in the computation of ABCR(I,II), is established.

We conclude the paper with an example. The ABCR(I,II) is computed when

the observations occur according to a Poisson process, and have a comeon normal

• or Laplace distribution.

2. Preliminaries.

Let X1, X2,... be i.i.d. with distribution P8 determined by the parameter 0.

For n - 1, 2,..., let (X1,...,X~) — X
(~) and let X(0) denote the event that no

observations are taken. We assume that the observations occur randomly over

time, i.e., the number which occur up until time t, say N
~
, is a random

variable. For simplicity and convenience we also assume Nt is independent of

the observations.

Consider the problem of testing the simple hypothesis H0: 8 - e
~ 

against

the simple alternative H1: B - 01. To avoid trivialities, we assume that

• P0 C P~ and that P0 and P0 are not imitually singular, i.e., there does not
0 1 0 1 
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exist a set A such that P8 (A) • 1 — P8 (A
’
~). A statistical test of H0 against0 1

H1 is defined as follows .

Definition. Given a statistic T, (possibly multidimensional), a function 4 is

said to be a test of H0 against 111 based on T if

(i) 4 is a measurable function of T,

(ii) O � f � l , and

(iii) the test consists of rejecting H0 with probability 4 (T) when T is

observed .

The type I and type II error probabilities are

~ (4) • E (4(T)) and 6(4) — E (1-4(T)),00 01

respectively.

We assume that a loss k1(k2)(0 < ki c 
~~, i — l,2) is incurred for a type

I (II) error. We place a prior on (0
~, el} by assigning masses w and

1 - (0 c i c  1) to 00 and 01, respect ively. Then the Bayes loss of the test

• is given by

(2.1) B(4) • wk13($) • (l-w)k 28(+),

and the Bayes risk, which is the sum of loss and observation cost , is given by

(2.2) M( 4 c T) — CT + B($),

where c1. denotes the cost of observing the statistic T.

For testing H0 against H1, we assume the following two sampling schemes

are both available .

3

_ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~



rr  
•

Scheme I. Take n observat ions at a Cost C1 (0 < c~ c~) per observation .

Scheme II. Take N 1 ( a random variable) observations by observing till some
fixed time t at a cost c2 (0 c c~ c co) per unit time .

The quantities c1 and c2 are referred to as the unit costs. It is easily

seen that the Bayes risks of a test •~ 
based on X (n) (i.e. Scheme I) and a test

based on X ,N •% (i.e. Scheme II) are
;.

c1n + B(4 1) and c2t +

respectively.

Let f and f2 denote the density functions of P0 and P0 , respectively,
1 2

with respect to some con~ on a-finite measure v (which is easy to construct.)

For n~~~0, 1et

1 if ~ 1og[f 1(X~)/f 2 (X~)] � log(k 1w/k 2 (l-w)J
(2.3) n~~(n)~~ 

1

O otherwise

and f o r n - 0, let

1 if k1w � k2 (1-ir )
$0(X 

(
~~
)
)hh1

0 otherwise.

It is well known that for a fixed number of observations n or for a random

number, Nt, of observations obtained by observing till time t , the Bayes loss

is minimized by basing the test procedure on the likelihood ratio, for instance

see Perguson ((1967), p. 292). Thus

• (2.4) inf{B(4): 4 a test based on X (~) } •

and

(2.5) inf{B($): $ a test based on X 
~ ) } B($N ~~~

t

4
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In the next section we compare tests based on the competing sampling

schemes I and II , on the basis of their Bayes risks . In each case we choose

the best available test and the optimal sample size or the opti~~l stopping

time. In view of (2.4) and (2.5), we can restrict our attention exclusively

to likelihood ratio tests.

3. Asymptotic Bayes Cost Ratio.

Let 4 (n—O ,l,...) be as defined in (2.3). Let

B~(c1) — inf{c1n + B($ )}
£ £ fl

and

B11(c2) — inf{c2t +

The quantities B1(c1) and B11(c2) correspond, respectively, to the risks

involved when the sample size n for Scheme I and the stopping time t for

Scheme II are chosen optimally, in typical cases , B1(c) and B11(c) both tend

to 0 as c tends to 0. When this is the case, we define the Bayes risk

efficiency as follows.

Definition. Let c1(.) be a function of c2 such that B1(c) ~ B11(c2) for

0 c c c c1(c2) and B1(c1(c2)) � B11(c2). Then the asymptotic Bayes cost ratio

(ABCR) of Scheme II relat ive to Scheme I is

ABCR(I ,II) — lim c1(c2)/c2c240

when this limit exists .

• To put the above definition into more applicable terms, the Bayes risk

criterion suggests that it is more profitable for the statistician to use

Scheme I when the rat io of the unit cost s c1/c2 � ABCR(I ,II) and to use

S
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Scheme II otherwise . Of course , we are assuming that the unit costs are both

relatively small.

When both c1 and c2 are small , the statistician is likely to observe a

large number of observat ions since other cost s remain fixed . One might , as a

first guess , say that the sampling scheme which yields more expected number

of observations for the same sampling cost is more profitable. For instance,

suppose under Scheme II that E(Nt/t) + ~ as t + ~~, where M is

some fixed constant. If the statistician observes until time t Ct large) , he

will observe approximately pt observations at a sampling cost of tc2. Under

Scheme I, he can observe tc2/c1 observations for the same sampling cost . Thus ,

one might guess that Scheme II would be more profitable than Scheme I if

> tc2/c1, i.e. if c1/c2 > l/ i .  This may not be always correct. We show

in Theorem 5.1 that distribution properties of Nt other than the behavior of

E(N~)/t as t +.‘ are involved. In fact, Theorem 5.1 states that under

certain conditions,

ABCR(I,II) ~

where p depends on the distribution of X1 through its m.g.f. and J depends on

the distribution of Nt through its m.g.f.. However, from Lemea 5.1, wherein

it is shown that ABCR(I,lI) � 1/ta , it follows that Scheme I is more profitable

than Scheme II if c1/c2 � 1/p .

4. Large deviations.

Let (T~} be a sequence of random variables, defined on some probability

space (X,8,P), for which T~ . p in probability as n + ~~~. Let A be a Borel

measurable set such that the closure of A does not contain p. Then P(T~ c A) + 
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Scheme II otherwise. Of course , we are assuming that the unit costs are both

relatively small.

When both C1 and c2 are smal l , the statistician is likely to observe a

large number of observations since other cost s remain fixed . One might , as a

first guess, say that the sampling scheme which yields more expected number

of observations for the same sampling cost is more profitable. For instance,
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will observe approximately pt observations at a sampling cost of tc2. Under

Scheme I , he can observe tc2/c1 observations for the same sampling cost. Thus,

one might guess that Scheme II would be more profitable than Scheme I if

> tc2/c1, i.e. if c1/c2 > 1/p . This may not be always correct. We show

in Theorem 5’ 1 that distribution properties of Nt other than the behavior of

E(N~)/t as t + are involved . In fact , Theorem 5.1 states that under

certain conditions,

ABCR(I ,II) —

where p depends on the distribution of X1 through its m.g.f. and J depends on

the distribution of Nt through its m.g. f . .  However , from L e a  5.1, wherein

it is shown that ABCR(I,II) � i/u , it follows that Scheme I is more profitable

than Scheme II if c1/c2 � 1/p .

4. Large deviations.

Let {T~) be a sequence of random variables, defined on some probability

space (X,8,P), for which T~ + p in probability as n + ~~~. Let A be a Borel

easurable set such that the closure of A does not contain p. Then P(T~ s A) + 0
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as n ... In typical cases P(T~ e A) + 0 at an exponential rate, i.e., there
exists a positive number such that

(4.1) u r n  log P(T £ A) —

When (4.1) holds, we say A is a large deviation event and call the index of
large deviation of -(Ta ~ A) or of T~ if the set A is otherwise understood.

The earliest research in the theory of large deviations dealt primarily
with sums of independent random variables. Most notable is the following
theorem due to Chernoff.

Theorem 4.1. (Chernoff (l9S2) p. 494). Let Y1. Y2,... be a sequence of i.i.d...
random variables with mean p c 

~~~
, (p may equal ~c). Then for T~ - ~

h a  !. log P (T~ ~ a) - - 

~~ [a,.’)’
where

“[a,..) a inf(-Aa • log E(e~~~): A � 0).

As a con.sequenc~ of the above theorem, Chernoff was able to determine
the exponential rate at which B($~) goes to zero.. This is given in the

• foUowing corollary.

Let

-• (4.2) —p — log inf{g(A): 0 c X c 1},
where • 

A l Àg(A) — J(f1(x)J [f0(x)J dv(x). •

7
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Corollary 4.2. Let B($~) be as defined in (2.4). Then,

(4.3) lint log B(+~) = —
~~~~
.

Remark. Under our assumption that P0 and P1 are not imitually singular, it

should be noted that B($~) + 0 as n ~ neither too fast nor too slow; i.e.,

0 c p < ~~~.

To suitably approximate the Bayes risk for Scheme II, we need a result

analogous to Corollary 4.2 for B($N ) .  This will follow from Corollary 4.4
t

below which is a consequence of Theorem 4.3.

Theorem 4.3. Let (an) be a sequence of 
non-negative integers such that

(4.4) lint (1/n) log a~ — -I,
n

where 0 c I c ~. Let *~
(A) = E(e~ t) and let

(4.5) lint (l/t) log *t (A) = J(A)
t

exist and be continuous and strictly increasing in a neighborhood of -I. Let

h(t) - }
~ 

a~ P(Nt - n). Then

(4 .6) lint (l/t) log h(t) — J ( — I ) .
t

Proof. Let c ‘ 0. From (4.4),

�

for all k � k(e). Thus

8
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k(c) (j )(4.7) s~
(_ I_ c) - Z em ~ P(N = m) � h(t) 

~ 1P~
(_ I+c) + a( c) P(Nt � k( c)) ,

where aCe) = max{ak : 0 ~ k � k (c)}. Assume that I > 0 and choose c such that

I - c > 0, 1’rom a Chebycheef inequality for P{Nt � k(c)} ,

h(t) � *t (
~I+c) (l + a(e)ek~~~~~~~]

and

111 (l/t) log h(t) � J(-I+t).
t

Since J is continuous at -I, we can allow c to decrease to 0 and obtain

(4.8) 131 (l/t) log h(t) ~ J(—I).
t

If I — 0, (4.8) is ismtediate since J(O) - 0. Now, choose to satisfy

0 c £1 < s and J(-I-e1) 
- J(-I-c) = 3a > 0. From (4.5), there is a to such

that f or t � t

et [~ ( 1 ~~~1 � 
~~(-‘-~i ) 

~ *~ (-I-e) � et~~~~~~~~~~j .

Thus, for t � t0, it follows that

h(t) � *1~ -I-e~) - ~
(C l)

em(_ I_ c 1) p(N — m)
m-0

k (e)
� 

~
-‘—

~
) — ek 1Xe~~i) 

~ 
em~~

I_
~~P(Nt a in)

m-O

� *.~ — i-e~~ — ek 1
~~~

_d1)
*t
(I_c)

� •
t[J( -I— c 1)—a] 

— ek 1)( t E 1) + t[J( —I—c )+a ]

� et[~~ £1~~
U] [l + o(l) 1

9 
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as t + .‘, thus establishing

lim (l/ t) log h(t) �
t

Since J is continuous at -I, we may allow e + 0 which entails C] + 0 and

a + 0 and we therefore obtain

(4.9) lint (l/t) log h(t) � J(-I).
t

Relations (4.8) and (4.9) established Theorem 4.2. 0

Corollary 4.4. Let p be as defined in (4.2). Let J(A) as defined in (4.5)

exist , be continuous and strictly increasing in a neighborhood of -p . Then

(4.10) lint (l/t) log B(+N ~ = J(-p).
t t

• I Proof. Since it was assumed that N
~ 

is independent of X1, X2,..., we have

• B(
~

(Nt)) = 
~ 
B($~) P(Nt in) .

m-0

Corollary 4.4 follows immediately from Theorem 4.2. 0

Remark. Let (Ne, t � 0) be a non homogeneous Poisson process with intensity

function p(t ) satisfying
- I 

t
(4.11) M(t )/ t  + p, where M(t) = f p(s)ds.

Then, 

0

— E(e~~t) —

and condition (4 .6) of Theorem 4.2 is satisfied , with

(4.12) J(A) — (e~’— l )p .

10
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5. General results on ABCR(I ,II) .

In the remainder of this paper , the following assumption is made concerning

the process (Nt ; t > 0).

Assumption A. Let p be as defined in (4.2) . There is a function J

which is continuous , strictly increasing and satisfies (4.5) in some neighbor-

hood of -~.

Theorem 5.1. Let assumption A hold. Then

(5.1) ABCR(I,II) —p/J(—p).

Proof. The theorem follows immediately from the asymptotic rates of B1(c)

B11(c) in (5.2) and (5.3) below, which we proceed to establish:

(5.2) B1(c) • -c log c/p , and

• (5.3) B
11

(c) - c log c/J(-p) ,

where f(c) - g(c) denotes f(c)/g (c) + 1 as c + 0. We will prove only (5.3) .

The proof of (5.2) is analogous and will be omitted .

• Since, 0 c p < by the Remark following Corollary 4.2 , it follows that

0 c -J(-p) c .‘. Choose £ such that 0 < c c -J(-p) . Recall that the Bayes

risk for Scheme II with unit cost c and observing till time t is

M(
~N , ct) — ct + B($.N ).

Thus, it follows from (4.10) of Corollary 4.4 that there exist s a • t0 independent

of c such that for t

11
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?:!~,c(t) — •
t(J~~~)~~~ + ct

~ 
M(4 1~ ,ct)t

� e J( ø)+e] 
+ Ct *

By differentiating M (.) and i~i (.) ,  it is seen that H C.) and i~i ( )—e,c d c  —e,c C,c

attain their minisums at

— -[ J(—p) —c ]~~ log [-J(—p)—e )c 1]

and

— -(J(—p)+e]~~ log(-J(-p)+c)c~~],

respectively. Since and tend to infinity as c + 0, it follows that

(5.4) � inf{M(•~ ,ct):t � t~,} �

I I

for all sufficiently small c. As c + 0, both the extreme terms of (5.4) tend

to zero. Thus

(5.5) inf(M(
~N ,ct):t � t } + 0 as c + 0.

t 0

Since 0 c J(-p) c •, it follows from (4.10) that B($N ) ‘ 0 for all large t.
t

Since B(+N ) is monotonic decreasing in t we can conclude that
t

inf(M(
~N ,ct):t < t

0
} 

~ 
B(~N ) > 0

t to
and, from (5.5), also that

12
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(5.6) inf(M($N , ct):t � ti,) — 811(c)

if c is small. Since

lint !! !!~,c(!~
)/c log c —

1’~ !!~~,~
(E
~
)/c log c —

it follows from (5.4) and (5.6) that B11(c) - c log c/J(-p). This completes

the proof of Theorem 5.1. 0

Remark. Let t - (log c)/J (-p) . Then it will follow from the proof above and

(4.10) that

• M (+N ,ct
~
) - B11(c).

C

Thus for Scheme II with unit cost c, t~ is an asymptotically optimal stopping

t ime. It follows similarly that log c/-p is an asymptotically optimal

sample size for Scheme I with unit cost c.

The following two leemas show the relationship of the ABCR(I ,II) to the

E(N
~
/t) and Nt/t as t + .

Liemas 5.2. The

ABCR(I ,II) � 1/lint E(Nt/t).
t

In fact, the above inequality is strict when J is strictly convex.

Proof. Let c > 0. Since log *~(A) is the cu ilant generating function of Nt ,

it is convex. Hence, for sufficiently small c,

13
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log •~

C-°
~ 

— .3
~- 
[log *~

(-P) - log •t~°~
3

~ (-p+~)t (log *t (-P+ c) - log *t(0)J

� ~~ log *t O) I A,o E(Nt/t).

The lemma follows by taking lint inf ’s in the above and by observing that, when

J(A) is strictly convex, J(-p)/-p c J(—p+~)/(-p+c). 0

Lemma 5.3. If Nt/t 
-

~ 
p in probability as t + .‘, then

ABCR(I ,II) ~ 1/p �.l/lirn E(Nt/t).

Proof. The right hand inequality follows readily from Fatou’s lemma. By

Jensen’s inequality, for t � 1,

log *~
(A) ~ log

By another application of Patou ’s leimna

lint t~~ log *~
(X) — J(X) ~ Ap.t

Thus -p/J (-p ) I 1/p. This completes the proof of Lemma 5.3. 0

~~~~~~~ 
Let X1, X2,... be i.i.d. with mean 0 and variance a2. We now compute

the ABCR(I,II) for testing H0: B - 0 against H1: 0 = 01 when the observations

occur according to a Poisson process (Nt: t > 0) with mean rate p and have a

• . co on normal or Laplace distribution. Then the ABCR(I,II) is

ABCR(I ,II) —

14
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where, from (4.2) ,

p — e~/(8d
2)jf the X’ s are normal , and

p — -log (1 + 0~/ (aIi)) + Oi/ (a/i)

if the X’s are Laplace, and

J(X) — p(eA - 1).

The table below lists p ABCR(I II) for various values of 01/a. One

interprets the table as follows: Scheme II is more or less profitable than

Scheme I according to whether or not pc1/c2 is greater than the appropriate

entry in the table. One sees immediately from the table that as the alter-

native hypothesis recedes from the null hypothesis the unit cost c2 necessary

for Scheme II to be as profitable as Scheme I with a fixed unit cost c1 must

• decrease. Also, as is expect ed from Lemma 5.2, p ABCR � 1.

Values of p ABCR(I ,II) , when under Scheme II observations according to a

Poisson process with parameter p and when testing for

0/0 N(O,o) versus N(8,a)* L(0,a) versus

.125 1.001 1.002

.250 1.004 1.007
• .375 1.009 1.015

.5 1.016 1.026

.625 1.025 1.038

.75 1.036 1.053

.875 1.049 1.070
1 1.064 1.089
1.5 1.147 1.178
2 1.271 1.290
2.5 1.440 1.421

• 3 1.666 1.571
3.S 1.954 1.738
4 2.313 1.921
4.5 2. 750 2.119
5 3.269 2.332

• •N(e,o) • Normal distribution with mean e and variance a2
L(O ,~) - Laplace distribution with mean 0 and variance a

15
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